Motion planning and control of robotic manipulators on seaborne platforms
نویسندگان
چکیده
Robots on ships have to endure large inertial forces due to the non-inertial motion of the ship. The ship motion affects both the motion planning and control of the manipulator, and accurate predictions can improve performance substantially. It is thus important to investigate to what extent it is possible to predict the future motion of a ship. Based on these predictions, this paper presents a new approach to motion planning and control of such manipulators. It is shown that the effects of the non-inertial forces can be eliminated—in fact, the robot can even leverage the inertial forces to improve performance compared to robots on a fixed base. In particular it is shown that by including the inertial forces in the motion planning the wear and tear on the robot due to these forces can be reduced substantially. To perform realistic experiments a 9-DoF robot is used. The first five joints are used to generate the real ship motion, and the last four joints are used for motion planning. The dynamic coupling between the first five and the last four joints is thus exactly the same as the dynamic coupling between a ship and a manipulator, which allows for very realistic experiments. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کاملGravity-Compensated Robust Control for Micro-Macro Space Manipulators During a Rest to Rest Maneuver
Many space applications require robotic manipulators which have large workspace and are capable of precise motion. Micro-macro manipulators are considered as the best solution to this demand. Such systems consist of a long flexible arm and a short rigid arm. Kinematic redundancy and presence of unactuated flexible degrees of freedom, makes it difficult to control micro-macro manipulators. This ...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011